LEO to GEO Hohmann Transfer¶
In this example we'll compute and visualize a Hohmann transfer from a low Earth orbit (LEO) at 400 km altitude to geostationary orbit (GEO) at 35,786 km altitude. The Hohmann transfer is the most fuel-efficient two-impulse maneuver for transferring between coplanar circular orbits, making it fundamental to spacecraft mission design.
We'll use the NumericalOrbitPropagator with event callbacks to apply impulsive velocity changes at perigee (departure) and apogee (arrival). The example demonstrates the complete workflow from calculating the required delta-v values to visualizing the orbit geometry and trajectory profiles.
Problem Setup¶
Our mission is to transfer a spacecraft from a circular LEO parking orbit at 400 km altitude to geostationary orbit at 35,786 km altitude. At GEO altitude, a satellite with zero inclination orbits the Earth once per sidereal day, appearing stationary relative to the ground - ideal for communications and weather satellites.
Hohmann Transfer Theory¶
Mathematical Background¶
The Hohmann transfer uses an elliptical transfer orbit that is tangent to both the initial and final circular orbits. The spacecraft performs two impulsive burns:
- First burn at perigee (LEO altitude): Increases velocity to enter the transfer ellipse
- Second burn at apogee (GEO altitude): Circularizes the orbit at the target altitude
The transfer orbit has its perigee at the initial orbit radius \(r_1\) and apogee at the final orbit radius \(r_2\).
Transfer orbit semi-major axis:
Circular orbit velocity (from the vis-viva equation for \(e = 0\)):
Velocity at perigee and apogee of transfer ellipse (vis-viva equation):
Delta-v for each burn:
Transfer time (half the orbital period of the transfer ellipse):
Delta-V Calculations¶
The total delta-v of approximately 3.85 km/s is substantial - this is why geostationary satellites require large launch vehicles or are launched into geostationary transfer orbits (GTO) where the rocket provides the first burn and the satellite provides the circularization burn.
Implementation¶
Initial State¶
We create an initial circular orbit at LEO altitude. The spacecraft starts at the point that will become the perigee of the transfer orbit:
Event Callbacks for Impulsive Maneuvers¶
One way to implement the impulsive burns is by propagating to the burn times, extracting the state, applying the delta-v, and restarting propagation with a new state and propagator. However, brahe provides a cleaner approach using event callbacks. An event callback is a function that is invoked when a specified event occurs during propagation. In this case, we use TimeEvent detectors to trigger the burns at the calculated transfer times. Each callback receives the event epoch and current state, and returns the modified state along with an EventAction indicating whether to continue propagation:
The callbacks apply delta-v in the prograde direction (along the velocity vector) to raise the orbit. Returning EventAction.CONTINUE tells the propagator to proceed with the modified state.
Single Propagator with Events¶
We use a single propagator with TimeEvent detectors to trigger the burns at the appropriate times. This is cleaner than multi-stage propagation for simple maneuver sequences:
Why Two-Body Dynamics?
We use the two-body force model (ForceModelConfig.two_body()) for this example because it provides the idealized Keplerian motion that matches the analytical Hohmann transfer theory. In practice, perturbations from Earth's oblateness, atmospheric drag (at LEO), and third-body effects would cause deviations that require trajectory correction maneuvers.
Sampling the Trajectory¶
We sample the trajectory at regular intervals to create the visualization data. The single propagator stores the complete trajectory including the state discontinuities from the burns:
Visualizations¶
Orbit Geometry¶
The following plot shows a top-down view of the transfer geometry. The spacecraft departs from the LEO parking orbit (dashed blue), follows the transfer ellipse (solid red) for half an orbit, and arrives at GEO (dashed green):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | |
Altitude Profile¶
The altitude profile shows the spacecraft climbing from 400 km to nearly 36,000 km over the ~5.3 hour transfer:
Velocity Profile¶
The velocity profile reveals the characteristic behavior of elliptical orbits - the spacecraft is fastest at perigee and slowest at apogee. The impulsive burns appear as discontinuities:
Transfer Summary¶
| Parameter | Value |
|---|---|
| Initial altitude | 400 km (LEO) |
| Final altitude | 35,786 km (GEO) |
| First burn \(\Delta v_1\) | 2.40 km/s |
| Second burn \(\Delta v_2\) | 1.46 km/s |
| Total \(\Delta v\) | 3.85 km/s |
| Transfer time | 5.29 hours |
Full Code Example¶
| geo_hohmann_transfer.py | |
|---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 | |
See Also¶
- Numerical Orbit Propagation - Propagator fundamentals
- Impulsive and Continuous Control - Maneuver implementation details
- Event Detection - Event-based propagation control
- Force Models - Configuring force models