Constants¶
The Constants module provides frequently occuring fundamental mathematical and astronomical constants.
Mathematical¶
Mathematical constants provide quick-reference to common factors.
Constant | Description |
---|---|
DEG2RAD |
Factor to convert from degrees and radians. |
RAD2DEG |
Factor to convert from radians to degrees. |
AS2RAD |
Factor to convert from arc-seconds to radians. |
RAD2AS |
Factor to convert from radians to arc-seconds. |
Time¶
Time constants are used for conversions between different time systems.
Constant | Description | Value | Units | Source |
---|---|---|---|---|
MJD_ZERO |
Offset between Modified Julian Date and Julian Date time scales. $t_{mjd} + {mjd}{0} = t{jd}$ | $2400000.5$ | Days | Montenbruck and Gill 1 |
MJD2000 |
Modified Julian date of J2000 Epoch. January 1, 2000 12:00:00. | $51544.5$ | Days | Montenbruck and Gill 1 |
GPS_TAI |
Constant offset from TAI to GPS time scale. $t_{gps} = t_{tai} + \Delta_{GPS-TAI}$ | $19.0$ | $s$ | Montenbruck and Gill 1 |
TAI_GPS |
Constant offset from GPS to TAI time scale. $t_{tai} = t_{gps} + \Delta_{TAI-GPS}$ |
$-19.0$ | $s$ | Montenbruck and Gill 1 |
TT_TAI |
Constant offset from TT to TAI time scale. $t_{tt} = t_{tai} + \Delta_{TT-TAI}$ |
$32.184$ | $s$ | Montenbruck and Gill 1 |
TAI_TT |
Constant offset from TAI to TT time scale. $t_{tai} = t_{tt} + \Delta_{TAI-TT}$ |
$-32.184$ | $s$ | Montenbruck and Gill 1 |
GPS_TT |
Constant offset from GPS to TT time scale. $t_{gps} = t_{tt} + \Delta_{GPS-TT}$ |
$-51.184$ | $s$ | Montenbruck and Gill 1 |
TT_GPS |
Constant offset from TT to GPS time scale. $t_{tt} = t_{gps} + \Delta_{TT-GPS}$ |
$51.184$ | $s$ | Montenbruck and Gill 1 |
GPS_ZERO |
Modified Julian Date of the start of the GPS time scale in the GPS time scale. This date is January 6, 1980 00:00:00 hours reckoned in the UTC time scale | $44244.0$ | Days | Montenbruck and Gill 1 |
Physical Constants¶
Physical constants are fundamental physical constants or properties of astronomical bodies. While these values are estimated they are considered to be well known and do not change frequently.
Constant | Description | Value | Units | Source |
---|---|---|---|---|
C_LIGHT |
Speed of light in vacuum. | $299792458.0$ | $\frac{m}{s}$ | Vallado 2 |
AU |
Astronominal Unit. TDB reference frame compatible value equal to the mean distance of the Earth from the Sun. | $1.49597870700 \times 10^{11}$ | $m$ | Gérard and Luzum 3 |
R_EARTH |
Earth's semi-major axis as defined by the Grace GGM05S gravity model. | $.378136.3$ | $m$ | Ries et al. 4 |
WGS84_A |
Earth geoid model's semi-major axis as defined by the World Geodetic System 1984 edition. | $6378137.0$ | $m$ | NIMA Technical Report 5 |
WGS84_F |
Earth geoid model's flattening as defined by the World Geodetic System 1984 edition. | $\frac{1.0}{298.257223563}$ | Dimensionless | NIMA Technical Report 5 |
GM_EARTH |
Gravitational Constant of the Earth. | $3.986004415 \times 10^{14}$ | $\frac{m^3}{s^2}$ | Montenbruck and Gill 1 |
ECC_EARTH |
Earth geoid model's eccentricity. | $8.1819190842622 \times 10^{-2}$ | Dimensionless | NIMA Technical Report 5 |
J2_EARTH |
Earth's first zonal harmonic. Also known as Earth's oblateness. | $0.0010826358191967$ | Dimensionless | Montenbruck and Gill 1 |
OMEGA_EARTH |
Earth's axial rotation rate. | $7.292115146706979 \times 10^{-5}$ | $\frac{rad}{s}$ | Vallado 2 |
GM_SUN |
Gravitational constant of the Sun. | $1.32712440041939400 \times 10^{20}$ | $\frac{m^3}{s^2}$ | Montenbruck and Gill 1 |
R_SUN |
Nominal photosphere radius of the Sun. | $6.957 \times 10^{8}$ | $m$ | Montenbruck and Gill 1 |
P_SUN |
Nominal solar radiation pressure at 1 AU. | $4.560 \times 10^{-6}$ | $\frac{N}{m^2}$ | Montenbruck and Gill 1 |
R_SUN |
Equatorial radius of the Moon. | $1.738 \times 10^{6}$ | $m$ | Montenbruck and Gill 1 |
GM_MOON |
Gravitational constant of the Moon. | $4.902800066 \times 10^{12}$ | $\frac{m^3}{s^2}$ | Montenbruck and Gill 1 |
GM_MERCURY |
Gravitational constant of the Mercury. | $2.2031780 \times 10^{13}$ | $\frac{m^3}{s^2}$ | Montenbruck and Gill 1 |
GM_VENUS |
Gravitational constant of the Venus. | $3.248585920 \times 10^{12}$ | $\frac{m^3}{s^2}$ | Montenbruck and Gill 1 |
GM_MARS |
Gravitational constant of the Mars. | $4.282837521 \times 10^{13}$ | $\frac{m^3}{s^2}$ | Montenbruck and Gill 1 |
GM_JUPITER |
Gravitational constant of the Jupiter. | $1.267127648 \times 10^{17}$ | $\frac{m^3}{s^2}$ | Montenbruck and Gill 1 |
GM_SATURN |
Gravitational constant of the Saturn. | $3.79405852 \times 10^{16}$ | $\frac{m^3}{s^2}$ | Montenbruck and Gill 1 |
GM_URANUS |
Gravitational constant of the Uranus. | $5.7945486 \times 10^{15}$ | $\frac{m^3}{s^2}$ | Montenbruck and Gill 1 |
GM_NEPTUNE |
Gravitational constant of the Neptune. | $6.836527100580 \times 10^{15}$ | $\frac{m^3}{s^2}$ | Montenbruck and Gill 1 |
GM_PLUTO |
Gravitational constant of the Pluto. | $9.770 \times 10^{11}$ | $\frac{m^3}{s^2}$ | Montenbruck and Gill 1 |
-
O. Montenbruck, and E. Gill, Satellite Orbits: Models, Methods and Applications, 2012 ↩↩↩↩↩↩↩↩↩↩↩↩↩↩↩↩↩↩↩↩↩↩↩↩
-
D. Vallado, Fundamentals of Astrodynamics and Applications (4th Ed.), 2010 ↩↩
-
P. Gérard and B. Luzum, IERS Technical Note 36, 2010 ↩
-
J. Ries, S. Bettadpur, R. Eanes, Z. Kang, U. Ko, C. McCullough, P. Nagel, N. Pie, S. Poole, T. Richter, H. Save, and B. Tapley, Development and Evaluation of the Global Gravity Model GGM05, 2016 ↩
-
Department of Defense World Geodetic System 1984, Its Definition and Relationships With Local Geodetic Systems ↩↩↩